
EN.540.635 - Software Carpentry Divya Sharma

EN.540.635 “Software Carpentry”

Problem Solving in Python

Introduction

In this handout I have compiled 5 example problems from one of the resources listed for the course: Leetcode. You can look
up the corresponding problem description/statement on the Leetcode website, accessing it through the provided hyperlink
section titles once you have made an account on there. You are welcome to attempt these problem and others listed on
Leetcode yourself to become more ’fluent’ and confident in Python. Please note that I have not added documentation for the
functions that I used to solve the problems, but starting some point in the class you will be expected to for the homework
assignments.

Shortest Distance to a Character

def shortestToChar(S, C):
dist = []

list comprehension to store indices at which

the letter C is present in string S

Go through the string and store the index

i that you get from the enumerate generator

whenever the current letter is the same as C

c pos = [i for i, c in enumerate(S) if c == C]
looping through only the indices and calculating

the shortest absolute difference b/w all the positions

and the list of stored char positions. The distances are

appended to dist

for i in range(len(S)):
c dist = [abs(i − c) for c in c pos]
dist.append(min(c dist))

return dist

if name == ’ main ’:

print(shortestToChar(’loveleetcode’, ’e’))

Rotated Digits

def rotatedDigits(N):
dictionary to store what different digits

become when rotated

digit dict = {
’0’: ’0’, ’1’: ’1’, ’2’: ’5’,

’5’: ’2’, ’6’: ’9’, ’8’: ’8’, ’9’: ’6’

}
increment by 1 whenever the ’good number’

conditions are met

good count = 0

for i in range(1, N + 1):
num = str(i)
keep adding the flipped digits

new num = ’’

Johns Hopkins University, ChemBE 1 Fall 2020

https://leetcode.com/
https://leetcode.com/problems/shortest-distance-to-a-character
https://leetcode.com/problems/rotated-digits

EN.540.635 - Software Carpentry Divya Sharma

for dig in num:
if dig not in digit dict:

break out of the loop if any

digits that are flippable are

encountered

valid = False

break
else:

new num += digit dict[dig]

valid = True

the number is only ’good’

if all the digits are flippable and

the new number is different from the OG

if new num != num and valid:
good count += 1

return good count

if name == ’ main ’:

print(rotatedDigits(30))

ZigZag Conversion

def convert(inp str , numRows):
if numRows <= 1:

return inp str
else:

create list of empty strings correpsonding

to each row of the new zigzag string

new str = [’’ for r in range(numRows)]
keep track of the row that you want to add

the letter to in the new string

row count = 0

the direction in which to travel the rows

1 means you are traveling down

−1 means you are traveling up
add row = 1

for s in inp str:
new str[row count] += s

travel down or up in the new str

row count = row count + add row

2 lettered strings will come out the same

if len(inp str) > 2:

if you either reach the botton row after traveling

down or reach the top row after traveling up

switch the directions

if any([row count == numRows − 1, not row count]):
add row = add row * −1

join the different list of strings in

new str to form 1 continuos string

new str = ’’.join(new str)

return new str

Johns Hopkins University, ChemBE 2 Fall 2020

https://leetcode.com/problems/zigzag-conversion

EN.540.635 - Software Carpentry Divya Sharma

if name == ’ main ’:

print(convert("PAYPALISHIRING"))

Validate IP address

import string

def validIPAddress(IP):
IPv4 addresses have a fullstop in the

if ’.’ in IP:
split the address along the full stop

this gives us a list of strings

ip list = IP.split(’.’)

make sure each string is not empty

and that we have only 4 components in

in the address

str lens = [len(num) > 0 for num in ip list]
if len(ip list) == 4 and all(str lens):

for each string component

checking if the first letter is 0

only if the string is greater that 1 letter

leading zeroes = [

num[0] == ’0’ and len(num) > 1 for num in ip list
]

if all the strings do not have leading zeroes

if not any(leading zeroes):
make sure that all strings are numeric

is num = [num.isnumeric() for num in ip list]
if all(is num):

convert all string components to integers

num list = list(map(int, ip list))
apply the number range constraints on all

the numbers

num range = [0 <= num <= 255 for num in num list]
if all(num range):

return ’IPv4’
else:

return ’Neither’
else:

return ’Neither’
else:

return ’Neither’
IPv6 addresses have colons in them

elif ’:’ in IP:
split laong the colon

ip list = IP.split(’:’)

if len(ip list) == 8:
check if each split component has between 1

and 4 characters

str lens = [1 <= len(num) <= 4 for num in ip list]

Johns Hopkins University, ChemBE 3 Fall 2020

https://leetcode.com/problems/validate-ip-address

EN.540.635 - Software Carpentry Divya Sharma

if all(str lens):
check if different string components are valid

hexadecimal numbers

hex valid = [

c in string.hexdigits
for num in ip list
for c in num

]

if all(hex valid):
return ’IPv6’

else:
return ’Neither’

else:
return ’Neither’

else:
return ’Neither’

else:
return ’Neither’

return ’Neither’

if name == ’ main ’:

print(validIPAddress("02001:0db8:85a3:0000:0000:8a2e:0370:7334"))

Magic Squares in Grid

def check magic sum(sub grid):
calculate and store the sums of the

2 diagonal in a 3 x 3 grid

diag2 sum = 0

diag1 sum = 0

for r in range(3):
get the elements of the rth column

curr col = [row[r] for row in sub grid]
check sum of rth row

if not sum(sub grid[r]) == 15:
return False

check sum of rth columns

elif not sum(curr col) == 15:
return False

add the diagonal element r, r to the sum

diag1 sum += sub grid[r][r]

add the diagonal element (2 − r), (2 − r)
to the sum

diag2 sum += sub grid[2 − r][2 − r]
check if both diagonal sums are 15

if diag1 sum != 15 or diag2 sum != 15:
return False

return True

Johns Hopkins University, ChemBE 4 Fall 2020

https://leetcode.com/problems/magic-squares-in-grid

EN.540.635 - Software Carpentry Divya Sharma

def numMagicSquaresInside(grid):
count the number of valid magic sub squares

magic count = 0

num rows = len(grid)
num cols = len(grid[0])
for r in range(num rows):

for c in range(num cols):
get the ending value for the

row and columns starting at coordinate r, c

r lim = r + 3

c lim = c + 3

check if the end points are within the

original grid

if r lim > num rows or c lim > num cols:

pass
else:

get the rows in between r and r lim

and then the elements b/w c and c lim

sub grid = [row[c: c lim] for row in grid[r: r lim]]
flatten the 2D list into a linear list

flat list = [c for row in sub grid for c in row]
get a set of the flat list to remove

duplicate elements

flat set = set(flat list)
if there are no duplicate elements

both flate set and flat list

will have the same length

if len(flat list) == len(flat set):
check if all the elements are distinct

num range = [0 < num < 10 for num in flat list]
check if the subsquare us magic or not

if check magic sum(sub grid) and all(num range):
magic count += 1

return magic count

if name == ’ main ’:

inp sqr = [

[4, 3, 8, 4],

[9, 5, 1, 9],

[2, 7, 6, 2]

]

print(check magic sum(magic square))

Johns Hopkins University, ChemBE 5 Fall 2020

