
EN.540.635 - Software Carpentry N. Thota

EN.540.635 “Software Carpentry”

Python Cheatsheet

Python has many definitions. Below I summarize a few of the common definitions Python goes by. Python is a :

1. General purpose : Can build software for a wide range of applications. Other examples are C, C++ and Java. On the
contrary SQL is a domain specific language for querying databases. CSS and HTML are specific to creating websites.

2. High Level : Provides strong abstraction from machine level details.

3. Object Oriented : A type of programming paradigm where data and logic are store together in virtual containers
called objects. Objects are created from classes which serve as the blueprint for objects. Everything in Python is built
using objects and the program defines the manipulation between objects.

4. Dynamic typed : The type of objects are determined during runtime. Unlike in other languages, this allows the
programmer to forgo declaring the type of variable at the start of the program.

To translate the high level code written by the programmer, Python uses both an interpreter and a compiler. An
interpreter converts high level code into machine code and executes the program line by line while a compiler converts the
high level code into machine code all at once. To access the Python interpreter shell, open a terminal/shell on your computer
and type in python at the command line. Depending on the version of Python installed on your system you should see a
window similar to the one below. Typing a command at the >>> and hitting enter executes the command and returns the
output on the next line.

Python 3.8.11 (default, Jul 29 2021, 14:57:32)

[Clang 12.0.0] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> print(’Hello world!’)
Hello world!

While the interpreter shell is useful for debugging small bits of code or testing out new Python functionality, it becomes
tedious to write large codes and share them. Python programs are often written as scripts in text files using editors like vi,
emacs, nano, sublime etc. and stored with the file extension ’.py’. To try this open an editor and type in the above code
and store it as ’my first python script.py’. To execute the above program open the terminal and navigate to the directory
the python script is stored at and type python ’my first python script.py’.

user name@machine name ∼ $python my first python script.py

In the background what happens is the python source code is checked for any errors and if there are no errors it gets
compiled into an intermediate representation called python bytecode (has extension .pyc) The Python bytecode is a machine
agnostic representation. This means that the code can be run on any computer provided the appropriate Python Virtual
Machine (PVM) is installed. This virtual machine is the Python Interpreter. Normally this file is hidden from view when
you type python ’my first python script.py’. To view this file type in the following command in the terminal.

user name@machine name ∼ $python −m py compile my first python script.py

This should create a directory called pycache in your current directory. Inside the directory there will be a file called
my first python script.cpython-38.pyc The contents of the file are all gibberish as they are just a series of bytes. Luckily we
can make sense of the content of the file by using a python module called dis which ’disassembles’ the python bytecode into
human readable format. To do this run the following command in the terminal.

user name@machine name ∼ $python −m dis my first python script.py

The above command outputs the instructions fed to the Python interpreter in assembly code. The CPython interpreter
operates using stack data structures. Refer to https://opensource.com/article/18/4/introduction-python-bytecode and dis
documentation to read the details of what each instruction does.

Johns Hopkins University, ChemBE 1 Fall 2024

https://opensource.com/article/18/4/introduction-python-bytecode
https://docs.python.org/3/library/dis.html
https://docs.python.org/3/library/dis.html

EN.540.635 - Software Carpentry N. Thota

Python built-in types

Everything in Python is an object. These objects come in several types. The principle built-in types are numerics, sequences,
mappings, classes, instances and exceptions. type() can be used to check the type of data you are dealing with.

>>> a = 1
>>> type(a)
<class ’int’>

This cheatsheet summarizes the built-in types and functions supported by the Python interpreter. The material is sourced
from The Python Standard Library.

1. Numeric Type

These represent all numerical data and variables created with these data.

Type Description Example usage

int Represents any integer-valued number. >>> a = 1

float Represents any real-valued number. >>> a = 1.0

complex Represent any complex-valued num-
bers.

>>> a = complex(real=1, imag=1)
>>> print(a)
(1+1j)

Supported operations with
numeric types

Description Example usage

x + y Addition >>> 2 + 3 # Output : 5
>>> a += 5 # a=a+5 (Aug. Assign)

x - y Subtraction >>> 2 − 3 # −1
>>> a −= 5 # a = a − 5

x * y Multiplication >>> 2 ∗ 3 # 6
>>> a ∗= 5 # a = a ∗ 5

x / y Division >>> 2 / 3 # 0.666
>>> a /= 5 # a = a / 5

x // y Floored Quotient >>> 3 // 2 # 1
>>> a //= 5 # a = a // 5

x % y Remainder of x/y >>> 5 % 2 # 1
>>> a %= 5 # a = a % 5

x ** y (or) pow(x,y) Power >>> 3 ∗∗ 2 # 9
>>> a ∗∗= 5 # a = a ∗∗ 5

abs(x) Absolute value >>> abs(−3) # 3

int(x) Type casting operation to int type.
Similar to math.floor() or math.ceil().

>>> int(−3.56) # 3

float(x) Type casting operation to float type. >>> float(−3) # −3.0

Johns Hopkins University, ChemBE 2 Fall 2024

https://docs.python.org/3.12/library/index.html

EN.540.635 - Software Carpentry N. Thota

3. String Type

These represent all the textual data in Python. Strings can be written using ’single quotes’ or ”double quotes” or ”””triple
quotes”””. Triple quoted strings can span multiple lines and includes the white space in between. They are most often used
when writing doc strings.

String methods Description Example usage

str.capitalize() First letter capitalized and rest are low-
ercased.

>>> a=’hello’
>>> a.capitalize()
’Hello’

str.title() Return a string with title case (first
character uppercase and remaining
characters lowercase)

>>> a=’hello python!’
’Hello Python!’

str.count(’substring’) Counts the number of occurrences of
the substring

>>> a.count(’l’)
2

str.find(’substring’) Returns the lowest index of the loca-
tion of the substring. To check if a
given substring is present in the string
use the ’in’ operator

>>> a.find(’lo’)
3
>>> ’lo’ in ’hello ’
True

f-strings Use to format a given string and re-
place text within a string denoted by
{}

>>> print(f”{a} Python !”)
’hello Python !’

str.join(iterable) Joins an iterator (can be list, tuple,
dict) of strings. The string on which
you call will be the separator. In the
example a blank space is a separator
between the strings.

>>> ’ ’.join ([’ Hello ’,’ Python ’,’!’])
’Hello Python !’

str.split(sep) Splits a string at the separator. >>>a=’Hello, Python!’
>>>a.split(’,’)
[’Hello’, ’ Python!’]

str.strip([chars]) Useful for removing trailing and
leading whitespaces if characters to
strip are not specified. Can use
str.lstrip([chars]) or str.rstrip([chars])
to remove only the leading and trail-
ing characters respectively.

>>>a=’ hello ’
>>>a.strip()
’hello’

Supported Operations with
string types

Description Example usage

’str1’ + ’str2’ String Concatenation >>>’str1’ + ’str2’
’str1str2’

constant*’str1’ Multiplication with a constant >>>3∗’str1’
’str1str1str1’

Johns Hopkins University, ChemBE 3 Fall 2024

EN.540.635 - Software Carpentry N. Thota

3. Boolean Type

These represent the truth values. These are the two constants True and False. They are used in conditional statements
if..elif..else and in for and while loops.

Supported logical operations
with boolean types

Description Example usage

and

This is the equivalent of and gate.
Truth table :
True and True = True
True and False = False
False and True = False
False and False = False

>>>a = 1
>>>b = 2
>>>if a.is integer() and b. is integer ():
... print(’a and b are integers’)
’a and b are integers’

or

This is the equivalent of or gate.
Truth table :
True or True = True
True or False = True
False or True = True
False or False = False

>>>a = 1
>>>b = 2.0
>>>if a.is integer() or b. is integer ():
... print(’Either a or b are integers’)
’Either a or b are integers’

not

This is the equivalent of not gate.
Truth table :
not True = False
not False = True

>>>a = 1.0
>>>if not a.is integer ():
... print(’a is not integer’)
’a is not integer’

is

This is called the object identity oper-
ator. The example to the right shows
an equivalent way of writing the above
example using the combination of ’is’
and ’not’ operators.

>>>a = 1.0
>>>if type(a) is not int :
... print(’a is not integer’)
>>>else:
... print(’a is integer’)
’a is not integer’

Johns Hopkins University, ChemBE 4 Fall 2024

EN.540.635 - Software Carpentry N. Thota

3. Sequence Type

There are three basic sequence types in Python : list, tuple, range and strings. Among sequences, lists and strings are called
mutable sequences.

Type Description Example usage

list An iterator object that can store any
object. Can be created by :

1. Using pair of square brackets : []

2. Using type constructor : list()

3. Using list comprehension : [x for
x in iterable]

Properties of a list :

1. Can modify contents of the list
without creating a new list (mu-
tability).

2. Can store objects of different
types.

Useful when you need to store related
data under a single object.

>>>[1,2,3]
[1,2,3]
>>>list(’123’)
[’1’, ’2’, ’3’]
>>>[x for x in range(1,4)]
[1, 2, 3]
>>>cool list[0]=4
>>>[’Hello’,4, cool list]
[’Hello’, 4, [1,2,3]]

tuple An iterator object that can store any
object. Can be created by :

1. Using pair of parentheses : ()

2. Using type constructor : tuple()

Properties of tuple :

1. Cannot modify contents of tu-
ple without creating a new tuple.
(immutability)

2. Can store objects of different
types.

Useful when you dont want to modify
the contents of original database. Tu-
ples are created when using the built-in
enumerate() function in Python.

>>>(1,) # Singleton tuple
(1,)
>>>(1,2,3)
(1,2,3)
>>>tuple([1,2,3]) #Creation from list
(1,2,3)
>>>for data in enumerate(cool list):
... print(data [0], data[1])

range Creates an immutable sequence of
numbers useful for looping in ’for’ loops

>>>list(range(1,4))
[1,2,3]

set An unordered collection of distinct ob-
jects. Commonly used for membership
testing, removing duplicates from a se-
quence, computing mathemical oper-
ations like intersection, union, differ-
ence, and symmetric difference

>>>duplicates=[1, 2, 3, 1, 2, 4, 6]
list (set(duplicates))
[1, 2, 3, 4, 6]

Johns Hopkins University, ChemBE 5 Fall 2024

EN.540.635 - Software Carpentry N. Thota

Supported Operations with
sequence types

Description Example usage

seq1 + seq2 Sequence Concatenation. Best for lists
and strings. Concatenating tuples re-
sults in a new tuple (due to immutabil-
ity) (Exercise: Check this is true us-
ing id() function in Python) resulting
in increased runtime. Not supported
for range.

>>>cool list = [1]
>>> cool list += [2]
>>> cool list
[1,2]

constant*seq Replicating the sequence >>>3∗[’hello’]
[’hello’, ’hello’, ’hello’]

x in seq / x not in seq Truth testing to determine if desired
object is present or not in seq.

>>>1 in [1, 2, 3’]
True

seq[i:j] and seq[i:j:k] Slicing operation >>>seq=[1, 2, 3, 4, 5, 6]
>>>seq[0:2]
[1, 2, 3]
>>>seq[0:−1:2]
[1, 3, 5]

len(seq) Length of sequence >>>len(seq)
6

max(seq) Largest item in sequence >>>max(seq)
6

min(seq) Smallest item in sequence >>>min(seq)
1

Some methods that work with lists :

1. list.append(x) : Add an item to end of list.

2. list.extend(iterable) : Extend the current list with all objects from the other list.

3. list.insert(i, x) : Insert object ’x’ at position ’i’.

4. list.remove(x) : Remove first item from list whose value is x.

5. list.sort() : Sort the list

6. list.reverse()

4. Mapping Type

The standard mapping type in Python are Dictionaries. They have a very different structure compared to sequences. Unlike
in sequence types which are indexed by numbers, dictionaries are indexed by keys. Keys can be any immutable type. Can
also use strings and numbers as keys. Only requirement is keys must be unique. For every key there is a value which can be
any type of object. A useful analogy to think about dictionaries is like an excel sheet. The column headers are the keys and
the rows for each column are the values. Lets look at how we can create a dictionary to store the heights of students in a
class.

>>>student heights={’name’:[’Jack’, ’Jill’, ’Bob’, ’Tony’, ’Alice’]
’heights (cms)’:[180, 170, 172, 168, 182]}

>>>student heights = dict([[’Jack’, ’Jill’, ’Bob’, ’Tony’, ’Alice’], [180, 170, 172, 168, 182]]) #
Build from nested lists

>>>list(student heights.keys()) # To get list of all keys

Johns Hopkins University, ChemBE 6 Fall 2024

EN.540.635 - Software Carpentry N. Thota

[’name’, ’heights (cms)’]

>>>list(student heights.values()) # To get a nested list
[[’Jack’, ’Jill’, ’Bob’, ’Tony’, ’Alice’], [180, 170, 172, 168, 182]]

>>>len(student heights) # Number of keys
2

>>>sum(list(student heights.values())[1]) # Sums all the heights of the students
872

Johns Hopkins University, ChemBE 7 Fall 2024

