
EN.540.635 
Software	Carpentry 

 
Lab	6 

Maze	Generation	and	Solver	pt.	1



• Lab	6	(pt.	1):	Maze	Generation	and	Solver 

• Objective:	

oGenerate	(pt.	1)	and	solve	(pt.	2)	mazes	using	Python

2

Begin	the	Lab!

So...



Files:

oLab_6.py

Software:

oPython 3.7  

3

Lab	Requirements



• Mazes	are	generated	as	png	images	using	the	Python	
Imaging	Library	(PIL),	and	similarly	solved	by	reading	in	a	
png	image,	and	outputting	a	new	one	with	the	solution	
marked	out	in	green.


• The	approach	taken	in	this	lab	is	to	use	a	Depth	First	
Search	approach	applied	to	maze	generation	and	solving.		


• This	method	starts	with	a	stack,	which	is	essentially	a	list	
of	positions.		It	will	be	initialized	at	some	coordinate	to	
signify	the	start	of	the	maze.		As	such,	we	may	begin	at:	[0,	
0]


• We	then	will	look	for	a	valid	position	to	take,	and	
randomly	select	it.		Two	possibilities	now	exist:

1. We	take	a	random	step.

2. No	valid	options	exist.

4

Procedure

Once	the	entire	space	of	possible	choices	
has	been	explored,	it	should	be

evident	that	the	backtracking	will	continue	
until	the	position	stack	is

empty.		It	is	at	this	point	that	the	maze	
generation	should	end.

White	=	Path	Exploration

Blue	=	Backtracking	

https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/stack-in-python/


• get_colors:	Defines	the	color	maps	that	the	maze	will	use

o Returns:	A	dictionary	that	will	correlate	the	integer	key	to	a	color


• save_maze:	Saves	a	maze	object	to	a	file

o Returns:	None


• 	load_maze:	Reads	a	maze	from	a	png	file	into	a	2d	list	with	values	corresponding	
to	the	known	color

o Returns:	A	maze	as	a	list


• pos_chk:	Validates	if	the	coordinates	specified	(x	and	y)	are	within	the	maze

o Returns:	True	if	within	the	maze	boundaries,	False	if	not


• generate_maze:	Generates	a	maze	using	the	Depth	First	Search	method	

o Returns:	None


• solve_maze:	Solves	a	maze	using	the	Depth	First	Search	method

o Returns:	None

5

Functions



6

Get_colors

• 0	-	Black	-	A	wall

• 1	-	White	-	A	space	to	travel	in	the	maze

• 2	-	Green	-	A	valid	solution	of	the	maze

• 3	-	Red	-	A	backtracked	position	during	maze	solving

• 4	-	Blue	-	Start	and	Endpoints	of	the	maze

Generated	Maze Solved	MazeGet_colors	()

Blue	!!



• get_colors:	Defines	the	color	maps	that	the	maze	will	use

o Returns:	A	dictionary	that	will	correlate	the	integer	key	to	a	color


• save_maze:	Saves	a	maze	object	to	a	file

o Returns:	None


• 	load_maze:	Reads	a	maze	from	a	png	file	into	a	2d	list	with	values	corresponding	
to	the	known	color

o Returns:	A	maze	as	a	list


• pos_chk:	Validates	if	the	coordinates	specified	(x	and	y)	are	within	the	maze

o Returns:	True	if	within	the	maze	boundaries,	False	if	not


• generate_maze:	Generates	a	maze	using	the	Depth	First	Search	method	

o Returns:	None


• solve_maze:	Solves	a	maze	using	the	Depth	First	Search	method

o Returns:	None

7

Functions



• The	color	list	is	a	(L	X	L)	2d	list	


• In	these	examples	our	image	size	is	500	x	500	


• If	every	block	equals	10	(nblocks	=	10),	then	every	10	x	10	pixel	is	1	
block	


• So	the	length	of	our	“stack”	is	50	x	50	(L/nblocks)

8

Load_maze



•Here	is	2d	color	list	for	an	original	black	image:	

9

Load_maze



•Here	is	the	2d	color	list	for	a	generated	maze:

10

Load_maze



•Here	is	the	2d	color	list	for	a	solved	maze:

11

Load_maze



• get_colors:	Defines	the	color	maps	that	the	maze	will	use

o Returns:	A	dictionary	that	will	correlate	the	integer	key	to	a	color


• save_maze:	Saves	a	maze	object	to	a	file

o Returns:	None


• 	load_maze:	Reads	a	maze	from	a	png	file	into	a	2d	list	with	values	corresponding	
to	the	known	color

o Returns:	A	maze	as	a	list


• pos_chk:	Validates	if	the	coordinates	specified	(x	and	y)	are	within	the	maze

o Returns:	True	if	within	the	maze	boundaries,	False	if	not


• generate_maze:	Generates	a	maze	using	the	Depth	First	Search	method	

o Returns:	None


• solve_maze:	Solves	a	maze	using	the	Depth	First	Search	method

o Returns:	None

12

Functions



• When	generating	the	maze	you	are	creating	all	the	pathways	for	the	maze	and	you	record	each	position	explored	in	your	stack!

• Start	at	the	[0,	0],	End	at	[W/n_blocks,	H/	n_blocks]	of	the	image	(W	=	H)

• Black	(key	=	0)	indicates	an	unexplored	path	or	coordinate,	you	are	to	explore	with	white	–	key	=	1	->	these	are	recorded	in	your	2d	color	list

• Movements:	Up,	Down,	Left,	or	Right

• Condition:	You	check	the	neighbors	and	(neighbors	of	neighbors)	to	see	if	there	is	an	already	explored	path	or	coordinate	in	the	stack	

• Selection:	Select	randomly	from	pathways/coordinates	that	satisfied	the	above	condition	

• Pop	out:	You	remove	the	most	recent	entry	of	the	list	if	there	are	no	moves	to	explore	(blue	path	in	video),	the	you	repeat	the	exploration	process	

(Show	whiteboard	demo!)

• Completion:	Stop	generating	a	maze	when	the	stack	is	empty.	In	the	previous	video	the	blue	path	indicates	that	the	path	has	been	explored	and	lead	

to	a	dead	end	(popped	each	coordinate	out	of	the	stack).	When	you've	explored	every	path	–	you	keep	popping	until	your	list	is	empy.

Generate_maze

Time	



14

Stack	close	to	the	start	of	exploration...

Begin	Maze	Generation	at	[0,	0]



15

Stack	towards	the	end...

At	this	point	you	are	popping	every	entry	in	the	position	stack	out!



• Complete	the	following	functions:

ogenerate_maze:


• Next	week:

osolve_maze	(This	will	be	your	WC7)

oLazor	Project	Discussion

16

Try	it	yourself!

Questions?


