
EN.540.635 
Software	Carpentry 

 
Lecture	1 

What	is	a	Computer?



Weekly	Programming	Challenges:


• Weekly	challenges	will	be	available	after	class	on	Tuesdays	and	are	normally	due	
by	class	start	time	the	following	Tuesday	(Turn	in	by	Thursday	midnight	for	up	to	
75%	credit).


• You	are	welcome	to	work	together,	but	turn	in	your	own	work.


• Challenges	will	start	off	easy	and	progress	as	the	semester	continues.


• You	may	not	have	learned	everything	prior	to	a	challenge	–	hence	the	word	
“Challenge”.

2

Course	Outline



Labs:


• These	assignments	are	to	be	completed	during	the	class	period	and	will	
not	be	handed	in	for	a	grade	(with	a	few	exceptions).


• Some	of	the	later	lab	assignments	can	be	handed	in	for	extra	credit	(this	is	
subject	to	change).

3

Course	Outline



• Lazor	Project:

oGroup	project	that	covers	a	lot	of	the	topics	we	cover	in	this	course.

o Involves	the	use	of	Git	(version	control).

oLearning	how	to	work	on	a	programming	project	with	others.


• Final	Project:

oApply	what	you	have	learned	to	a	program	of	your	choosing.

oNeed	to	get	prior	approval	from	the	instructors.

o Should	be	more	robust	(require	more	effort)	than	the	Lazor	project.

oFinal	presentation	near	the	end	of	the	semester.

o Important	to	make	sure	that	your	work	is	your	own!

4

Course	Outline



What	is	a	Computer?

• A	magical	box.

• A	machine	that	uses	ones	and	zeros	to	do	things.

• It	lets	me	use	the	internet.

5



Ones	and	Zeros

6

• We	count	in	decimal:


• But	what	if	we	only	knew	the	numbers	0	and	1?


• Binary	System!


• Computers	count	in	this:



Changing	Base

How	do	you	read	10,353?

	 Ten	Thousand,	Three	Hundred	and	Fifty	Three

	 =	1	*	10,000	+	0	*	1,000	+	3	*	100	+	5	*	10	+	3	*	1

	 =	1	*	104	+	0	*	103	+	3	*	102	+	5	*	101	+	3	*	100


How	about	10?

	 (10)10	=	1	*	101	+	0	*	100


	 (10)2	=	1	*	21	+	0	*	20	=	(2)10


Here,	we	changed	to	base-2	notation,	where	10	is	equivalent	to	2.


(10101010001)2	=	1	*	210	+	0	*	29	+	1	*	28	+	…	+	1	*	20	=	(1361)10

7



Gates	in	Computers?

• We	need	1’s	and	0’s…	Voltage!

• We	need	a	device…	THE	TRANSISTOR!

8

Channel/Body

Source

Dielectric

GATE

Drain



Logic

• We	want	computers	to	accomplish	basic	
tasks.


• They	must	“Think”:


o AND	–	If	two	things	are	true,	then	do	some	task

o NAND	–	If	not	AND	–	If	two	things	are	both	not	true	
at	the	same	time,	then	do	some	task


o OR	–	If	at	least	one	of	two	things	are	true,	then	do	
some	task


o NOR	–	If	not	OR	–	If	neither	of	the	two	things	are	
true,	then	do	some	task


o XOR	–	If	exactly	only	one	of	two	things	is	true,	then	
do	some	task

9
https://learnabout-electronics.org/Digital/dig21.php



Logic	-	AND

10

1

1

0

0

1 0

0 0

AND – If two things are true, then True



Logic	-	NAND

11

1

1

0

0

0 1

1 1

NAND – If not AND – If two things are both not true at the same time, then True



Logic	-	OR

12

1

1

0

0

1 1

1 0

OR – If at least one of two things are true, then True



Logic	-	NOR

13

1

1

0

0

0 0

0 1

NOR – If not OR – If neither of the two things are true, then True



Logic	-	XOR

14

1

1

0

0

0 1

1 0

XOR – If exactly only one of two things is true, then True



Logic	-	Gates

15

1

1

0

0

AND

OR

NAND

OR


XOR

NAND

OR


XOR

NAND

NOR



The	Adder

16
https://en.wikipedia.org/wiki/File:Halfadder.gif

This	is	a	simple	example	of	a	subcomponent	that	can	exist	inside	of	a	processor.	
In	reality,	processors	can	be	extremely	complex.



That	Magical	Black	Box

17



The	Case

18



The	First	Look

19



Lots	of	Cables

20



21

CPU



22

CPU	Cooler



Motherboard

23



GPU	and	RAM

24



The	Front	Panel

25



Power	Supply

26



Hard	Drive	and	Optical	Drive

27



Putting	it	Back	Together

28



Putting	it	Back	Together

29



Putting	it	Back	Together

30



Putting	it	Back	Together

31



Putting	it	Back	Together

32



There	are	two	things	you	need:

1. Text	editor


o Simple	text	editors:

▪ Notepad/TextEdit

▪ Vim/Nano

▪ Sublime	Text	(text	editor	&	IDE)

▪ Jupyter	Notebook	(web-based;	do	not	turn	in	Jupiter	notebooks!)


o Integrated	Development	Environments	(IDEs):

▪ PyCharm	

▪ Spyder	(comes	with	Anaconda;	“input”	function	is	buggy)

▪ VS	Code

▪ Eclipse	+	PyDev

33

Setting	up	your	Programming	Environment



There	are	three	things	you	need:

2. Command	Line	Interface


oWindows:

▪ Command	Prompt

▪ Windows	Terminal	(currently	in	beta)	or	Windows	PowerShell

▪ Windows	Subsystem	for	Linux	(WSL)

▪ Git	Bash

▪ Anaconda	PowerShell	Prompt


omacOS/Linux:

▪ Terminal

▪ iTerm

34

Setting	up	your	Programming	Environment



3.	Python	(note:	conda	is	a	command	line	tool	/	python	package,	like	pip)


Anaconda	(Python	+	conda	+	meta	package):

oOpen-source	distribution	of	Python	geared	towards	scientific	computing/data	science.

oOver	1500	scientific	packages	auto	installed	at	once

oNeeds	more	time	to	install	&	disk	space

oMake	sure	you	download	for	the	correct	OS	that	you	are	using


• Go	to	https://www.anaconda.com/download

• Macs	make	sure	to	check	for	CPU	vs	M1/M2.


Miniconda	(Python	+	conda):

oOpen-source	distribution	of	Python	geared	towards	scientific	computing/data	science.

oMust	install	each	packaged	you	want	individually

o Smaller	&	more	lightweight

oMake	sure	you	download	the	Python	3.10	version	for	the	correct	OS	that	you	are	using.


•Go	to	https://docs.conda.io/en/latest/miniconda.html		

•Miniconda3	macOS	Apple	M1	64-bit	pkg	for	M1	Macs	for	example

35

Setting	up	your	Programming	Environment

http://www.apple.com
https://docs.conda.io/en/latest/miniconda.html
https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.pkg

