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Lecture	1 

What	is	a	Computer?



Weekly	Programming	Challenges:


• Weekly	challenges	will	be	available	after	class	on	Tuesdays	and	are	normally	due	
by	class	start	time	the	following	Tuesday	(Turn	in	by	Thursday	midnight	for	up	to	
75%	credit).


• You	are	welcome	to	work	together,	but	turn	in	your	own	work.


• Challenges	will	start	off	easy	and	progress	as	the	semester	continues.


• You	may	not	have	learned	everything	prior	to	a	challenge	–	hence	the	word	
“Challenge”.
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Labs:


• These	assignments	are	to	be	completed	during	the	class	period	and	will	
not	be	handed	in	for	a	grade	(with	a	few	exceptions).


• Some	of	the	later	lab	assignments	can	be	handed	in	for	extra	credit	(this	is	
subject	to	change).
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• Lazor	Project:

oGroup	project	that	covers	a	lot	of	the	topics	we	cover	in	this	course.

o Involves	the	use	of	Git	(version	control).

oLearning	how	to	work	on	a	programming	project	with	others.


• Final	Project:

oApply	what	you	have	learned	to	a	program	of	your	choosing.

oNeed	to	get	prior	approval	from	the	instructors.

o Should	be	more	robust	(require	more	effort)	than	the	Lazor	project.

oFinal	presentation	near	the	end	of	the	semester.

o Important	to	make	sure	that	your	work	is	your	own!
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What	is	a	Computer?

• A	magical	box.

• A	machine	that	uses	ones	and	zeros	to	do	things.

• It	lets	me	use	the	internet.
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Ones	and	Zeros
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• We	count	in	decimal:


• But	what	if	we	only	knew	the	numbers	0	and	1?


• Binary	System!


• Computers	count	in	this:



Changing	Base

How	do	you	read	10,353?

	 Ten	Thousand,	Three	Hundred	and	Fifty	Three

	 =	1	*	10,000	+	0	*	1,000	+	3	*	100	+	5	*	10	+	3	*	1

	 =	1	*	104	+	0	*	103	+	3	*	102	+	5	*	101	+	3	*	100


How	about	10?

	 (10)10	=	1	*	101	+	0	*	100


	 (10)2	=	1	*	21	+	0	*	20	=	(2)10


Here,	we	changed	to	base-2	notation,	where	10	is	equivalent	to	2.


(10101010001)2	=	1	*	210	+	0	*	29	+	1	*	28	+	…	+	1	*	20	=	(1361)10
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Gates	in	Computers?

• We	need	1’s	and	0’s…	Voltage!

• We	need	a	device…	THE	TRANSISTOR!
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Logic

• We	want	computers	to	accomplish	basic	
tasks.


• They	must	“Think”:


o AND	–	If	two	things	are	true,	then	do	some	task

o NAND	–	If	not	AND	–	If	two	things	are	both	not	true	
at	the	same	time,	then	do	some	task


o OR	–	If	at	least	one	of	two	things	are	true,	then	do	
some	task


o NOR	–	If	not	OR	–	If	neither	of	the	two	things	are	
true,	then	do	some	task


o XOR	–	If	exactly	only	one	of	two	things	is	true,	then	
do	some	task
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Logic	-	AND
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Logic	-	NAND
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Logic	-	OR
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Logic	-	NOR

13

1

1

0

0

0 0

0 1
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Logic	-	XOR
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Logic	-	Gates
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The	Adder
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This	is	a	simple	example	of	a	subcomponent	that	can	exist	inside	of	a	processor.	
In	reality,	processors	can	be	extremely	complex.



That	Magical	Black	Box
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The	Case
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The	First	Look
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Lots	of	Cables
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CPU
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CPU	Cooler



Motherboard
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GPU	and	RAM
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The	Front	Panel
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Power	Supply
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Hard	Drive	and	Optical	Drive
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Putting	it	Back	Together
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Putting	it	Back	Together
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Putting	it	Back	Together
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Putting	it	Back	Together
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Putting	it	Back	Together
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There	are	two	things	you	need:

1. Text	editor


o Simple	text	editors:

▪ Notepad/TextEdit

▪ Vim/Nano

▪ Sublime	Text	(text	editor	&	IDE)

▪ Jupyter	Notebook	(web-based;	do	not	turn	in	Jupiter	notebooks!)


o Integrated	Development	Environments	(IDEs):

▪ PyCharm	

▪ Spyder	(comes	with	Anaconda;	“input”	function	is	buggy)

▪ VS	Code

▪ Eclipse	+	PyDev
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Setting	up	your	Programming	Environment



There	are	three	things	you	need:

2. Command	Line	Interface


oWindows:

▪ Command	Prompt

▪ Windows	Terminal	(currently	in	beta)	or	Windows	PowerShell

▪ Windows	Subsystem	for	Linux	(WSL)

▪ Git	Bash

▪ Anaconda	PowerShell	Prompt


omacOS/Linux:

▪ Terminal

▪ iTerm
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3.	Python	(note:	conda	is	a	command	line	tool	/	python	package,	like	pip)


Anaconda	(Python	+	conda	+	meta	package):

oOpen-source	distribution	of	Python	geared	towards	scientific	computing/data	science.

oOver	1500	scientific	packages	auto	installed	at	once

oNeeds	more	time	to	install	&	disk	space

oMake	sure	you	download	for	the	correct	OS	that	you	are	using


• Go	to	https://www.anaconda.com/download

• Macs	make	sure	to	check	for	CPU	vs	M1/M2.


Miniconda	(Python	+	conda):

oOpen-source	distribution	of	Python	geared	towards	scientific	computing/data	science.

oMust	install	each	packaged	you	want	individually

o Smaller	&	more	lightweight

oMake	sure	you	download	the	Python	3.10	version	for	the	correct	OS	that	you	are	using.


•Go	to	https://docs.conda.io/en/latest/miniconda.html		

•Miniconda3	macOS	Apple	M1	64-bit	pkg	for	M1	Macs	for	example
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Setting	up	your	Programming	Environment

http://www.apple.com
https://docs.conda.io/en/latest/miniconda.html
https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.pkg

