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Searching AT

Finding the index of a value/object in a list:
o In a list, where is the maximum?
o In a list, where is the minimum?
o In a list, where is a specific value located?

Two main ideas:
o Linear searching binary search

o Binary searching

linear scan
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Binary Searching e o

Requires a sorted binary tree
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Comparing Linear and Binary Search e

 Linear search took 20 comparisons to find the smallest number
larger than 20, while the binary search only took 6!

* Should we only ever use binary?

e What situations is linear better in?
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* We can write our own linear and binary searching algorithms in
Python.

* There are several other searching algorithms besides linear and
binary search:
o Jump search
o Interpolation search
o Exponential search
o Recursive searching methods
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* Optimization allows us to find the
best values for a given set of :
mathematical constraints.

* A common example is curve fitting. ©

-10

» Useful in computational research, as
well as data analysis for experimental
work.

-5 =

* In Python, there are optimization
functions that are typically bundled
together in software packages.
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Optimization Examples

Nudged elastic band (NEB):

Isomerization of CNH to HCN
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Optimizing Reaction Fluxes in a Metabolic Network:
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Optimization Techniques and Algorithms R

* In this class, we’ll be focusing on some iterative methods that
make use of Hessians and gradients.

* Some examples include:
o Newton’s method
o Quasi-Newton methods
o Conjugate gradient
o Gradient descent/steepest descent
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General Formulation for Gradient-based Problems VHITING scHooL

* We have a function f(x), and we want to find a value x such that
f(x) is minimized.

* Typically, f(x) is (twice) differentiable, convex, and exists within
the Euclidean space R", where n is the dimension. There may also
be a set of constraints that we have to adhere to.

* [n an iterative optimization method, we guess an initial value x,
and the update our value using the gradient in some way until we
converge at the minimum:

X4 1= X+ S VE(xy)
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Example of a Quasi-Newton Method e

1. Choose a starting point, X,
2. Calculate the search by approximating the inverse Hessian, H!
3. Calculate the change in x by the following expression:

Xy 41 = X~ [H], V(%)

4. Determine x,,, from the expression above.

5. Check if the method has converged - we see if the gradient is
equal to O.

6. Repeat from step 2 until we have converged.
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Other Gradient-Based Methods VHITING scHioor

* There are other methods where there are different ways to
approximate the inverse Hessian (or not use it at all).

* Gradient descent/steepest descent: X1 = X, — Yn VF(x,), n > 0.

* Broyden-Fletcher-Goldfarb-Shanno (BFGS):

yy!  Hyss'Hy

Hk+l — Hk 3 yTS _ STHkS

S = Xkl — Xk» Y = Vf(xra1) — V(xx)
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Conjugate Gradient
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0.40 A comparison of Conjugate Gradient vs Steepest Descent
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. . . . ]Q
SciPy’s Optimize Function o

* SciPy has an optimize function that has many different solving
algorithms built in.

scipy.uptimize‘minimize(fun, X0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None,
constraints=(), tol=None, callback=None, options=None) [source]
Minimization of scalar function of one or more variables.

Parameters:
fun : callable

The objective function to be minimized.
fun(x, *args) -»> float

where x is an 1-D array with shape (n,) and argsis a tuple of the fixed parameters needed to
completely specify the function.

X0 : ndarray, shape (n,)

Initial guess. Array of real elements of size (n,), where 'n’ is the number of independent
variables.
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

