=N
N
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

EN.540.635
Software Carpentry

Lecture 7
Variable Scope | Recursion | Data Structures

JOHNS HOPKINS

Variable Scope o

* Scope is the environment in a program from which a particular
Python object is accessible

 When you enter a function, a new ‘scope’ is created

def f(x):
X = X
print('Within f, x =', x)
X
Within f, x = 5
5

__naré
X
print(f(x))
print(x)

: == JOHNS HOPKINS
Variable Scope IO e

Global Scope

f Some code

* Use of global variables is frowned upon. You can use them as constants
(GLOBAL_CONSTANT)

 https://stackoverflow.com/questions/19158339 /why-are-global-variables-evil

https://stackoverflow.com/questions/19158339/why-are-global-variables-evil

JOHNS HOPKINS

Variable Scope o

* In python, the LEGB rule is used
to decide the order in which the
namespaces are checked: Builtin
o Local: Inside function/ class Global

o Enclosed : Defined inside Enclosed
enclosing functions (parent/ n
nesting) function

o Global: Uppermost Level
o Built-In

* Python tutor:

7T 7T X2

http://pythontutor.com/

JOHNS HOPKINS

Recursion VHITING scHiooL

* A programming technique in which a program calls itself
* An iterative solution to a problem can also be solved recursively

def iter_factorial(n):
prod

n :
prod = prod " n

n n

prod

def rec_factorial(n):
n :

Base case

n * rec_factorial(n)

JOHNS HOPKINS

Fibonacci Sequence o

0,1, 1, 2 3,5, 8, 13, 21, 34, 55, 89, 144, ...

def iter_fibonacci(n):
old, new 8, 1
n (=

def rec_fibonacci(n):
n (e]

n

i range(n - 1):
old, new new, old new

rec_fibonacci(n - 1) + rec_fibonacci(n - 2)

new

A recursion approach is sometimes more intuitive than the iterative
approach to solve a problem. Towers of Hanoi is one such problem.

HNS HOPKINS

. . égf?]()
Recursion vs Iteration B

of ENGINEERING

t@ - time.time()
print(rec_fibonacci(30))
tl = time.time()

print(tl - te))
print(iter_fibonacci(3e))
t2 = time.time()

print(t2 - t1)

* Recursion is almost definitely
832040
0.5660800933837891 always Slower than the
832040

0.0 iterative solution as the size of
the input increases

t@ - time.time()
print(rec_fibonacci(49))
tl = time.time()

print(tl - t@)
print(iter_fibonacci(49))
t2 = time.time()

print(t2 - t1)

165580141
146.2495937347412

165580141
e.e

JOHNS HOPKINS

Why Data Structures? SRR

* Optimize the processing of data via:
o Algorithms
o Data Structures

* Data Structures help in:

o Organization: Instead of having N variables, we can have one variable that holds
N values

o Speed: It can be MUCH faster to search (ex. smallest value) in a data structure

o Math: Custom data structures (classes and objects) and default/in-built
functions can help in mathematical operations (ex: Matrices)

JOHNS HOPKINS

Common Data Structures WHITING scHOOL

* Things we've already seen:
o Lists

oTuple

o Dictionaries

S] Built-in Data User-Defined Data

* New concepts in this class: -
o Linked Lists e o s s
o Binary Trees

o Stacks and Queues

https://d1jnx9ba8s6j9r.cloudfront.net/blog/wp-content/uploads/2019/10/TreeStructure-Data-Structures-in-Python-Edurekal.png 9

Linked Lists

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

* A list of objects, with each element “pointing” to the next

* A double linked list also points backwards

* Not commonly used in python

HEAD

Single Linked List

==.'>|7 ==>|3 :=>|4 e NULL

>| 5
HEAD

Double Linked List

_—

NULL ===

| 5 2 =t | 3 : — | === NULL

= —
=~ 1 e —

10

. . JOHNS HOPKINS
Linked Lists WHITING ScHOOL

class Linked_List:

class Node:

def __init_ (self, node=None):

self.head node

def insert_node(self, node data):

def __init__ (self, x, point=None): new_node - Node(node_data)
n self.head: -
self.head new_node

current = self.head
(current.next):
current current.next
current.next new_node

def _ str_ (self):
11 =
i self:
11 = 11 + str(i)

self.val = x 1

self.next point
def __iter_ (self):
current self.head
(current):
current.val
current current.next

JOHNS HOPKINS

Binary Trees i o

* A form of data organization
 Each element has a maximum of 2 children nodes
* A binary tree can insert, delete, and traverse nodes.

12

. ey JOHNS HOPKINS
Binary Trees IR

class Binary_Tree:
class Node:

def __init__(self, node=None):

self.root node

def add_node(self, key, node=None):

def __init__(self, data, Left=None, right=None):

node:
node self.root
self.head_node:
self.root = Node(key)

key node.val:
node. left:
node.left = Node(key)

self.add_node(key, node.left)

self.right right .
setf. left left node.right:
self.val data node.right = Node(key)

self.add_node(key, node.right)

JOHNS HOPKINS

Stacks and Queues s o
STACK QUEUE
e Referred to as First In Last * Referred to as First In First

* Operations that can be

* Operations thatcanbe performed are ‘enqueue’ and
performed are ‘push’ and ‘pop ‘dequeue’

Pu;;\\}

7 @\
Push

Pu;:\\

2 sﬁ

Push

Back Front

(1] I
Dequeue
/Mp [5] Enqueue
5 mp [4]
@F 3]

=[polea]fer

3] / Pop //”“IEI
- Pop
E
14

https://miro.medium.com/max/875/1*4Pn00ch_p4DTCb4r3naCDQ.png https://miro.medium.com/max/750/1*FwL7mJ4qpQWZnommC5tsFQ.png

JOHNS HOPKINS

]
AS L 1 S tS WHITING SCHOOL
of ENGINEERING

* STACK

stack ["Andrew', 'Haili', 'Isaiah', 'Divya’', 'Aaron']
stack.append('Nikita")

stack.append('Seun")

stack.pop()

stack.pop()

- QUEUE

['Andrew’, 'Haili', 'Isaiah', 'Divya‘’', 'Aaron’]
.append('Nikita')
.append('Seun')

-pop(@)
-pop (@)

15

