
EN.540.635
Software Carpentry

Lecture 8
Git, Version Control, and Python Modules



Have you ever…

• Overwritten a file by accident?

• Deleted a file by accident?

• Worked on a project with others, but had issues whenever you had 

to merge your work?

• Made a lot of edits to something until you thought:

“Huh… what I had in that first version was much better than what I have 

now…”?

2



What is Version Control?

• It stores changes to your work over time, so that you may always 
retrieve what you had lost.

• It allows you to make edits without breaking everything.

• It allows several people to work together without annoying one 
another.

• The most popular platforms for version control are:

3

Git SVN



• Git was originally created by Linus Torvalds in 2005, originally for use 
in the Linux kernel. It is free, open-source, and available for all common 
operating systems (Windows, macOS, Linux).

• Github is a website that has Git functionalities and other features useful 
for hosting source code.

• In concept, any project you are working on that involves files (source 
code, Word documents, PowerPoint slides, etc.) can be managed with 
Git and Github.

• Git Website: https://git-scm.com/
• Github Website: https://github.com/

4

Git and Github

https://git-scm.com/
https://github.com/


• In practice, pretty much any large software project that requires 
collaboration between team members needs to use version 
control.

• For this class, Git and Github will be our way to learn about it and 
incorporate version control into your work.

• It is important to note that you do not NEED Github in order to use 
Git - everything can technically be done from the command line.

5

Git and Github



• If we can do everything we need to do with a GUI (which Github
does provide), why should we learn how to do things from the 
command line?

• Using the command line can be faster than using a GUI at the 
expense of being a bit more complicated to learn and use.

• If you work in tech or software development, there may be many 
times where you will have to use the command line because a GUI 
is not available.

6

Command Line Interface (CLI) vs. Graphical User Interface (GUI)



7

Your Profile on Github



8

Sidebar



9

Your Repositories



10

Creating a New Repository



11

Creating a New Repository



12

Cloning from Github



• README.md is a markdown file that should contain text that acts 
as a ”user manual”. It should cover some/all of the following 
things:
oConfiguration/installation instructions

oOperating instructions

oFile manifest

oTroubleshooting (known errors and bugs)

oCredits and acknowledgments

• .gitignore is a special file that you can use to specify files that git 
should ignore. Any files that appear in your repo that you don’t 
need (or are too large), you should list them in this file.

13

README and .gitignore



• To check if you have Git installed on 
your computer, you will see a 
display like this if you type git into 
your command line.

• This menu has all the common 
commands listed (and they are 
grouped based on their function).

• There are also tutorials and help 
functions built in.

14

Git Command Summary



• The single most important thing to remember is that if you ever 
have any questions about a certain Git command, you can always 
use the help flag.

• For example:

• This will take you to a screen that displays the documentation for 
the command you are using. To exit this screen, press the q key.

15

The Help Function



• A repository, or repo for short, is a data structure that stores all the 
metadata for a set of files in a directory.

• To simplify, you can think of it as a place where we store all our 
files and keep track of the history of the files themselves.

• To create a new repo locally, you would make a new directory, 
change to it, and use the command:

16

Repositories



• If we have an existing repo, we can easily create a copy of it using git clone.

• Cloning works both locally and remotely.

• Local:

• Remote:

• Most of the time, we start a remote repo (on Github) and then clone a local 
version to our computer.

17

Cloning

This can also be replaced with an HTTPS or SSH URL



In the local repo on your computer, 
there is a certain workflow as to how 
you make changes and “save” them:

1. Working Directory – this is where the 
actual files are located.

2. Index – this is basically a staging area 
where you add all the changes you’ve 
made.

3. Head – this points to the last commit 
that was made. Once you’ve staged all 
the changes you want to make, you 
commit them and update the head.

18

Workflow



• Git stores the content of your files in 
objects (here, they are called 
“blobs”).

• Your folders turn into objects called 
“trees” that contain other trees and 
blobs.

• A commit is a type of object that 
contains a tree. Once created, objects 
cannot change.

19

How Exactly Does Git Work?

From David Gohberg’s “The Biggest Misconception About Git”



• First, you will add files to your local repo and make edits to them.

• Once you’ve made all the changes you want to make and you want 
to update your repo, you must add those changes to the index.

oTo add a specific file, use the command:

o If you changed multiple files and you want to add all of them, use the 
command:

• Even if you have files from a previous commit, you must add them 
again if you’ve made any edits to them.

20

Adding Files to the Index



• If you have previously added a file, but now you want to remove it 
from your working directory and index, you can use the command:

• To remove a file just from the index, but keep it in your working 
directory, you can use the rm command with an appropriate flag:

21

Removing Files



• So now, we have staged all the changes we want to make. The next 
step is to commit all those changes with the following command:

• For every commit you make, you need to include a message that 
quickly describes all the changes you made. If you ever want to go 
back to a previous version of your code, you can find a version of 
your project you want based on the commit message you used.

• At this point, we have basically “saved” our changes in our local 
repo on our computer.

22

Committing



• Normally, we have a remote repo that we keep separate from our 
local repo (especially when we are collaborating on a project with 
other people).

• To properly update the remote repo, we need to push our local 
changes to it with the following command:

• For this to work, we need to have cloned our repo from an existing 
remote repo.

23

Pushing to a Remote Repository



• Branches are used for working on different files/parts of code that are 
isolated from each other.

• The default branch is called the master branch. Every repo will start 
with a master branch when initialized. 

• If you are collaborating with other people, you will probably be working 
on different parts of the code and you may want to have different 
branches for each part.

• Once you have finished work on a certain branch, you can merge it back 
into the master branch.

24

Branching



25

Branching



• To create a new branch:

• To switch to an existing branch:

• To delete a branch:

• A branch is not available to collaborators unless you first push it to 
the remote repo.

26

Branching



• If there have been changes made to the remote repo (by other 
people) and we want to update our local repo with those changes:

• Once we have finished working on a different branch and we want 
to update our master branch, we merge those changes:

27

Updating and Merging



• Git will try to automatically reconcile the changes when you merge 
branches.

• If there are any conflicts (ex. if you and another person both edited 
the same lines of code in the same file, but in different branches), 
you will have to manually edit the files to resolve conflicts.

• Once you’ve made the appropriate changes, you’ll have to 
add/commit them again.

• Before merging, you can preview those changes with the following 
command:

28

Merging



• It is common for software releases to have numerical identifiers to 
distinguish between different versions.

• The most common format for this numbering is called semantic 
versioning:

• In Git, you can label software releases with tags:

29

Software Versions and Tagging

This string should be the first 10 characters 
of the commit tag you are referring to



• To look back at the history of a repo, we can use Git’s log
command:

• This will display the history of commits and who made them.

• There are many different parameters for displaying the history in 
different ways:
o See all commits from a certain author.

oModify the display (lists, ASCII trees).

o See changed files.

• To see all the different parameters available, use: 

30

Repository History



• There many be times where you accidentally mess up your local 
repo (accidentally delete a file, made a small change somewhere 
and now your code doesn’t work at all, etc.).

• To replace a file with the version from your previous commit:

• If you want to drop all the changes you’ve made since a previous 
commit, you can use the following commands:

31

Replacing Local Changes



32

Overall Workflow

Command Workflow
Example of Project 

History Tree



• We’ve seen several different Python libraries that have useful 
functions:
o random

omath

oPIL

oMatplotlib

• The ability to import existing functions and classes from other 
Python scripts is very important for complex programs that 
require many lines of code.

33

Python Modules



There are 3 different ways to import modules:

There are also shortcuts for importing 
modules but be sure to use them 
appropriately!

34

Import Statements

1) 2) 3)



• argparse – library for command line arguments and argument parsing.

• copy, shutil – useful for creating copies of objects.

• os – useful for interfacing with your operating system.

• pickle – convert objects to smaller data types (object compression).

• sys – library for accessing specific system parameters and functions.

• time – useful for functions related to time (benchmarking).

• tkinter – useful for making programs with GUIs.

• itertools – useful functions and data types for efficient looping.

All of them can be found here: https://docs.python.org/3/py-
modindex.html

35

Other Useful Modules in Python’s Default Libraries

https://docs.python.org/3/py-modindex.html


• Useful for data science and scientific computing (written in C, so it 
works fast) – these are basically a better version of the default math 
module.

• NumPy:
o Access to array objects (a good alternative to lists).
o Has many useful functions related to linear algebra, random numbers, and 

vector/matrix operations.

• SciPy:
o Has many useful functions related to numerical methods and analysis 

(integration, optimization, interpolation, statistics, signal processing).
o Has a lot of overlap with NumPy.

• Documentation for both packages can be found here: 
https://docs.scipy.org/doc/

36

NumPy and SciPy

https://docs.scipy.org/doc/


• We can create our own modules to use in 
Python.

• We must first write the code that makes up 
the module, add the directory where the 
code is located to our PYTHONPATH, and 
then source the proper resource file.

• More details on this can be found in the 
“Python Modules” handout.

37

Creating Our Own Modules


