
EN.540.635 - Software Carpentry F. Shaikh

EN.540.635 “Software Carpentry”

Weekly Challenge 2 - Quadratic Equation Solver

For this assignment, you will need to be able to run Python. In lab, we will go over connecting to a remote machine
and running code there (say, on Rockfish). We will also cover installing Anaconda and Python in class, so that we can clear
up any problems that you may have run across so that you can set up your programming environment exactly as you want
it. Before getting to the assignment, we will first review a few important topics that are relevant to the assignment.

Variables: A variable is a way to store values in codes. Essentially, they point the code/program to where the data is
stored. Data itself can take on many forms, the simplest of which are the following:

• int: An integer (0, 1, 2, -3, -5, ...). In math, this is the numbers in the set Z.

• float: A real number (1.2, 3.423, -12.32, ...). In math, this is the numbers in the set R.

• str: Strings is a computer term for text. Strings can hold any characters!

In class we learned how to print text to screen using the print command:

>>> print("Hello World")
Hello World

As well as how to do basic arithmetic:

>>> a = 2
>>> b = 4
>>> a + b
6

>>> a ∗ b
8

>>> a ∗∗ b
16

We also learned that variables of different data types don’t play nicely together (in Python 2.7):

>>> 1/3

0

>>> 1/3.0

0.3333333333333333

>>> 10 ∗∗ (1/3)
1

>>> 10.0 ∗∗ (1/3)
1.0

>>> 10 ∗∗ (1/3.0)
2.154434690031884

Finally, we learned that we can cast between datatypes:

>>> a = float(1)
>>> b = 1
>>> print(a)
1.0

>>> print(b)
1

Johns Hopkins University, ChemBE 1 Spring 2025



EN.540.635 - Software Carpentry F. Shaikh

In this assignment, you will learn about making function(s). A function is just like what you learned in math. For instance,
let’s look at the function of f(x) = a ∗ x2 + b. In python, this would look like the following:

>>> def f(x):
... a = 3.0

... b = 2.1

... return a ∗ x ∗∗ 2 + b

...

>>> f(3)
29.1

Note, I’ve assigned the variables a and b within the function. A nicer way to go about this though would be to give the user
the option to specify a and b, but leave a default if they don’t want to change it:

>>> def f(x, a=3.0, b=2.1):
... return a ∗ x ∗∗ 2 + b
...

>>> f(3)
29.1

>>> f(3, a=2, b=1)
19

>>> f(3)
29.1

Notice how we’ve assigned a default value to a and b in the function call, but allow the users to override this as they see fit.
In this instance, x is an argument to the function, while a and b are known as keyword arguments.

Now, there is something called conditionals in coding that gives us a lot more power. For instance, say we want to de-
termine if a number is positive, negative, or zero. We can do the following:

>>> a = −2.3
>>> if a < 0:

... print("a is negative")

... elif a > 0:

... print("a is positive")

... else:

... print("a must be equal to 0")
a is negative

Note, we can string together as many elif as we want (but keeping one’s code concise is also important).

WEEKLY CHALLENGE 2:
Using what you’ve learned, write a Python program that will calculate the roots of a quadratic equation.

x = −b±
√
b2−4ac
2a

We should be able to run your program using a function call to “quadratic solver” that takes 3 numbers (a, b, and c, in that
order) and returns the roots of the quadratic equation. You may want to start off with assuming c will be 0 (Note, we will
not tell you how to return multiple values from a function - use Google!). Once you have figured out that part, you can now
focus on making a more robust quadratic solver. We started out with the simplification that c = 0 because, if it isn’t, there
is a chance that b2−4ac < 0, which would give us an imaginary root! Although Python allows us to have imaginary numbers
with the letter j, when taking the square root of a negative number it chooses to throw an error instead. Using conditional
statements, and splitting the quadratic function apart into separate values, you can check if it would become an imaginary
number and handle it accordingly. Note - there are many ways to go about accomplishing this.

On Canvas, you are to turn in a single .py file with your Python code. Do not write code in the terminal,
copy, paste, and turn that in (we will grade harshly if you do so, as the code will 100% not run).

Johns Hopkins University, ChemBE 2 Spring 2025


