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EN.540.635 “Software Carpentry”

Weekly Challenge 4 - RSA Encryption

For this assignment, you will generate two functions that use the RSA encryption method, named after Rivest, Shamir,
and Adleman. Following this, you will also write a function (as well as several helper functions) that generates RSA encryp-
tion key pairs.

In short, the RSA Encryption and Decryption works by using three integers: N , E, and D. These are chosen using some
algorithm, but afterwards allow you to encrypt and decrypt messages. Let M be some integer we want to encrypt, we can
do so as follows:

Encrypt: C ≡ ME modN

Now, M is encrypted as C. We can decrypt it back to M as follows:

Decrypt: M ≡ CD modN

Part 1 -

In class, we went over how RSA encryption can be used to encrypt and decrypt information/messages. An example of
the values that can be generated from the RSA encryption algorithm is the following:

N =17947

E =7

D =10103

Using these values, make two functions that will (1) encrypt any string and (2) decrypt an encrypted string. The first
function, called “encrypt”, will encrypt a string (think of this as password protecting). The second, called “decrypt”, will
decrypt the given message, allowing you to read it back. Essentially, you should be able to run the following code:

message = "This message will be encrypted"

encrypted message = encrypt(message, N=17947, E=7)

decrypted message = decrypt(encrypted message , N=17947, D=10103)

print("Checking if encryption and decryption worked... "),
print(str(message == decrypted message))

HINTS & NOTES

1. Cast all data types to integers (NOT NUMPY INTEGERS! USE int())

2. Do not use the “np.power()” function (it uses internal variables that lead to buffer overflows).

3. You may use either % or “np.mod()”; however, note that the latter will change your data types to numpy data types,
which is an issue.

4. You are welcome to store your encrypted string in any format (for example: a list of encrypted numbers. But there is
no one way to do this).
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Part 2 -

Make a function to generate the key itself. That is, make a function that will generate for you a valid N , E, and D
that you can use with your encrypt and decrypt functions. To get you started, you’ll need to write the following functions:

1. generate key() - A function to call that starts the key generation.

2. get prime divisors(N) - A function that finds all prime divisors of a given number that is passed to it (say N).

3. get primes in range(low, high) - A function that finds all prime numbers in the given range between low and high.

4. is prime(p) - A function that checks if a given number (here p) is prime or not

The algorithm we use to generate our key is as follows (remember: N , E, and D are all integers):

1. N = P ∗Q where P and Q are large prime numbers (for now let’s just say primes > 130).

2. X = (P − 1)(Q− 1)

3. Find E < X such that E is relatively prime to X. That is, all the prime divisors of E are not contained in X. Ex. let
X = 24, it’s prime divisors are [2, 3]. Thus, from all possible primes less than X we find that E can be comprised of
[5, 7, 11, 13, 17, 19, 23].

4. Find D such that D ∗ E ≡ 1modX. That is, D ∗ E = k ∗X + 1 where k is some integer.

Please upload a .py file to the appropriate assignment in Blackboard with the following components:

1. Part 1 - A function that can encrypt any string and a function that can decrypt the encrypted message.

2. Part 2 - The four listed functions that are used to generate the key.

3. In your main block, use the generate key() function to generate keys and then use those keys to encrypt a string and
decrypt it back to its original string.

Background (for whoever is interested):

For a quick background, modular arithmatic simply finds the smallest integer remainder of a number N when divided
by M. That is, take the following example:

R ≡ 44mod 7

Here, we simply want to find R such that 44 = 7 ∗ k + R, where k is the largest possible integer for which R is positive. In
this example:

44 =7 ∗ k + R

44 =7 ∗ 5 + 9

44 =7 ∗ 6 + 2

44 =7 ∗ 7 − 5

Thus, R = 2 and 44mod 7 ≡ 2. Note the use of the ≡ symbol. This simply means that the two values are congruent (that is,
the remainder of 44 / 7 is the same as the remainder of 2 / 7). A good way to understand this is to recognize that 1mod 10,
11mod 10, 21mod 10, and 31mod 10 are all equivalent (as the remainder being 1 should be self evident from our decimal
system). It is common for the expression a ≡ bmodn to be such that b < n (as there are a multitude of valid answers here).

Now, the secret behind the RSA encryption is that integers E and D can be chosen in such a way that the following is
true:

MED modN ≡ (ME)D modN ≡ (MD)E modN ≡ M modN
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Why do we care about this? Well, looking back at our encryption, we know that ME ≡ CmodN . If we want to de-
crypt it, it would be nice if we had some D such that CD ≡ M modN . That is, (ME)D ≡ M modN . Now, all we need to do
is show that (ME)D ≡ M modN . Let’s first generate N and select an E and D as per the algorithm described above. From
this, let’s show (ME)D ≡ M modN .

(ME)D ≡M modN

M (D∗E) ≡M modN

M (k∗X+1) ≡M modN

M (k∗(P−1)(Q−1)+1) ≡M modN

Now, before we continue we need to acknowledge “Fermat’s little theorem”. That is, that a(p−1) ≡ 1mod p if p is prime
(don’t worry about proving this, it’s a well established theorem so we will just accept it for now). We find the following:

M (k∗(P−1)(Q−1)+1) ≡M modN

(M (P−1))(k(Q−1)+1) ≡M modN

(M (P−1))k(Q−1) ·M ≡M modN

To show this is true, we first discern if (M (P−1))k(Q−1) ·M ≡ M modP is true. This is done as follows:

(M (P−1))k(Q−1) ·M ≡M modP

(1modP )k(Q−1) ·M ≡M modP

1 ·M ≡M modP

M ≡M modP

It can be seen that an equivalent proof can show that (M (P−1))k(Q−1) · M ≡ M modQ. Now all that’s left is to take
advantage of a property in modular arithmetic! That is, if we show that a ≡ bmodx and a ≡ bmod y, then a ≡ bmod (x ∗ y).
In this case, we have shown that (M (P−1))k(Q−1) ·M ≡ M modP and (M (P−1))k(Q−1) ·M ≡ M modQ. Thus, we have shown
that (M (P−1))k(Q−1) ·M ≡ M modN . Therefore:

M ≡M mod (P ∗Q)

M ≡M mod (N)

As we have just gone through a derivation converting the left hand side from (ME)D to M , we find:

MED ≡ M modN
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Figure 1: ASCII Table for Reference
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