EN.540.635 - Software Carpentry T.Nikhil and F.Shaikh

EN.540.635 “Software Carpentry”
Weekly Challenge 4 - RSA Encryption

For this assignment, you will generate two functions that use the RSA encryption method, named after Rivest, Shamir,
and Adleman. Following this, you will also write a function (as well as several helper functions) that generates RSA encryp-
tion key pairs.

In short, the RSA Encryption and Decryption works by using three integers: N, E, and D. These are chosen using some
algorithm, but afterwards allow you to encrypt and decrypt messages. Let M be some integer we want to encrypt, we can
do so as follows:

Encrypt: C = MP mod N
Now, M is encrypted as C. We can decrypt it back to M as follows:

Decrypt: M = CP mod N
Part 1 -

In class, we went over how RSA encryption can be used to encrypt and decrypt information/messages. An example of
the values that can be generated from the RSA encryption algorithm is the following;:

N =17947
E =7
D =10103

Using these values, make two functions that will (1) encrypt any string and (2) decrypt an encrypted string. The first
function, called “encrypt”, will encrypt a string (think of this as password protecting). The second, called “decrypt”, will
decrypt the given message, allowing you to read it back. Essentially, you should be able to run the following code:

message = "This message will be encrypted"
encrypted message = encrypt(message, N=17947, E=7)
decrypted message = decrypt(encrypted message, N=17947, D=10103)

print ("Checking if encryption and decryption worked... "),
print (str(message == decrypted_message))

HINTS & NOTES
1. Cast all data types to integers (NOT NUMPY INTEGERS! USE int())
2. Do not use the “np.power()” function (it uses internal variables that lead to buffer overflows).

3. You may use either % or “np.mod()”; however, note that the latter will change your data types to numpy data types,
which is an issue.

4. You are welcome to store your encrypted string in any format (for example: a list of encrypted numbers. But there is
no one way to do this).

Johns Hopkins University, ChemBE 1 Fall 2024


https://simple.wikipedia.org/wiki/RSA_%28algorithm%29

EN.540.635 - Software Carpentry T.Nikhil and F.Shaikh

Part 2 -

Make a function to generate the key itself. That is, make a function that will generate for you a valid N, E, and D
that you can use with your encrypt and decrypt functions. To get you started, you’ll need to write the following functions:

1. generate key() - A function to call that starts the key generation.
2. get_prime_divisors(N) - A function that finds all prime divisors of a given number that is passed to it (say N).
3. get_primes_in_range(low, high) - A function that finds all prime numbers in the given range between low and high.
4. is_prime(p) - A function that checks if a given number (here p) is prime or not
The algorithm we use to generate our key is as follows (remember: N, E, and D are all integers):
1. N =P x(Q where P and @) are large prime numbers (for now let’s just say primes > 130).
2. X=(P-1)(Q-1)

3. Find F < X such that F is relatively prime to X. That is, all the prime divisors of E are not contained in X. Ex. let
X = 24, it’s prime divisors are [2,3]. Thus, from all possible primes less than X we find that E can be comprised of
[5,7,11,13,17,19,23].

4. Find D such that D« E = 1mod X. That is, D «* F = k « X 4+ 1 where k is some integer.

Please upload a .py file to the appropriate assignment in Blackboard with the following components:
1. Part 1 - A function that can encrypt any string and a function that can decrypt the encrypted message.
2. Part 2 - The four listed functions that are used to generate the key.

3. In your main block, use the generate key() function to generate keys and then use those keys to encrypt a string and
decrypt it back to its original string.

Background (for whoever is interested):

For a quick background, modular arithmatic simply finds the smallest integer remainder of a number N when divided
by M. That is, take the following example:
R =44mod7

Here, we simply want to find R such that 44 = 7 x k + R, where k is the largest possible integer for which R is positive. In
this example:

44 =T+xk+ R
44 =T+5+9
44 =T+6+2
44 =T*7—-5

Thus, R = 2 and 44 mod 7 = 2. Note the use of the = symbol. This simply means that the two values are congruent (that is,
the remainder of 44 / 7 is the same as the remainder of 2 / 7). A good way to understand this is to recognize that 1 mod 10,
11mod 10, 21 mod 10, and 31mod 10 are all equivalent (as the remainder being 1 should be self evident from our decimal
system). It is common for the expression a = bmodn to be such that b < n (as there are a multitude of valid answers here).

Now, the secret behind the RSA encryption is that integers F and D can be chosen in such a way that the following is

true:
MFP mod N = (MF)YP mod N = (MP)E mod N = M mod N

Johns Hopkins University, ChemBE 2 Fall 2024



EN.540.635 - Software Carpentry T.Nikhil and F.Shaikh

Why do we care about this? Well, looking back at our encryption, we know that M¥ = Cmod N. If we want to de-
crypt it, it would be nice if we had some D such that CP = M mod N. That is, (M*)? = M mod N. Now, all we need to do
is show that (MF)P = M mod N. Let’s first generate N and select an E and D as per the algorithm described above. From
this, let’s show (M¥)P = M mod N.

(ME)D =M mod N

MP*E) =M mod N

MEXFD) =0 mod N
MEEP=D@Q=D+D) =71 1mod N

Now, before we continue we need to acknowledge “Fermat’s little theorem”. That is, that a®»~1) = 1modp if p is prime
(don’t worry about proving this, it’s a well established theorem so we will just accept it for now). We find the following:

MEHP=1)(Q=D+D) =T mod N
(ME-D)EQ=D+D) = AT mod N
(M(P—l))k(Q—l) - M =M mod N

To show this is true, we first discern if (MF~=D)k(@Q@=1) . M = M mod P is true. This is done as follows:

(MP=DYRQ=D) . Af =M mod P
(1mod P)* Q=Y . M =M mod P
1-M =M mod P

M =M mod P

It can be seen that an equivalent proof can show that (M(Pfl))k(Qfl) - M = M mod@. Now all that’s left is to take
advantage of a property in modular arithmetic! That is, if we show that a = bmod z and a = bmody, then a = bmod (z *y).
In this case, we have shown that (MF~=)*Q@=1. A = M mod P and (MF~D)k@Q@=1 . M = M mod Q. Thus, we have shown
that (M(P=D)@=1 . M = M mod N. Therefore:

M =M mod (P * Q)
M =M mod (N)

As we have just gone through a derivation converting the left hand side from (M¥®)P to M, we find:

MEDP = M mod N

Johns Hopkins University, ChemBE 3 Fall 2024



EN.540.635 - Software Carpentry

T.Nikhil and F.Shaikh

Dec HxOct Char Dac Hy Oct Html Chr  [Dec Hx Oct Himl Chr| Dec Hx Oct Himl Chr
0 0000 NUL (null) 32 20 040 &#32; Ipace| g4 40 100 «#64:; @ | 96 60 140 &#96;
1 1 001l 50H (start of heading) 33 21 041 «#33; ! 65 41 101 &#65; 4 | 97 61 141 &#97: a
2 2 002 5TH (start of text) 34 22 042 &#34; 7 65 42 102 &#66; B | 98 62 142 &#93; b
3 3 003 ETX (end of text) 35 23 043 &#35: # £7 43 103 &#67: C | 99 63 143 &#99: C
4 4 004 EOT {end of tramsmission) 36 24 044 s#36; § 65 44 104 «#68; DI (100 64 144 «#100; d
5 5 005 ENQ (enquiry) 37 25 045 &#37; % 69 45 105 «#69; E 101 65 145 &#101; &
6 6 006 LCE [{acknowledge) 38 26 046 &#38: & 70 46 106 «#70; F (102 66 146 &#102; €
7 7 007 BEL (bell) 39 27 047 «#39; ' 71 47 107 «#71; G (103 67 147 &#103; O
4 & 010 BES (backspace) 40 28 050 &#40; | 72 45 110 «#72; H 104 68 150 &#104; h
9 9 011 TAE {horizental tab) 41 29 051 «#4l: ) 73 49 111 «#73; I [105 9 151 &#105; 1
10 & 012 LF (NL line feed, new line)| 42 2A 052 &#42; 74 4h 112 «#74; 7 (106 gA 152 «#106; ]
11 E 013 VT (wertical tab) 43 2B 053 &#43; + 75 4F 113 «#75; K 107 6B 153 &#107; k
12 C 0l4 FF (NP form feed, new page)| 44 2C 054 «#44; , 76 4C 114 «#76; L |108 6C 154 «#108; 1
13 I 0l5 CE (carriage return) 45 200 055 &#45; - 77 4D 115 «#77; M (109 6D 155 &#109;
14 E 016 350 (shift out) 46 2E 056 &#467 . 75 4E 116 &«#78; N [110 6E 156 &#110: n
15 F 017 5I (shift in) 47 2F 057 «#47; / 79 4F 117 &«#79; 0 [111 &F 157 &#1l1l; o
16 10 020 DLE (data link escape) 48 30 060 &#48: 0 80 50 120 «#80; P [112 70 160 &#ll2; p
17 11 021 DCL (dewice control 1) 49 31 061 &#49; 1 51 51 121 &#81: 0 |113 71 161 &#113: o
1§ 12 022 DCZ (device control 2) 50 32 062 s#50; 2 G2 52 122 «#82; R (114 72 162 s#1ld; ¢
19 13 023 DC3 (device control 3) 51 33 063 &#51; 3 83 53 123 «#83; 3 |115 73 163 &#115; =
20 14 024 DC4 (device control 4) 52 34 064 &#52; 4 54 54 124 «#84; T (115 74 164 «#llé; ©
21 15 025 NAE (negative acknowledge) 53 35 065 &#53; § 85 55 125 «#85; U [117 75 165 &#1l7; u
22 16 026 SYN (synchronous idle) 54 36 066 &#54: 6 86 56 126 «#86; V (118 76 166 &#1l8: v
23 17 027 ETE (end of trams. block) 55 37 067 &#55: 7 87 57 127 «#87; W 119 77 167 &#119; W
24 1§ 030 CAN [cancel) 56 38 070 &#56; & 86 56 130 «#88; X 120 78 170 &#120; x
25 19 031 EM  (end of medium) 57 39 071 &#57: 9 89 59 131 «#89; T (121 79 171 &#121: ¥
26 li 032 SUE (substitute) 58 34 072 &#58; @ 90 SA 132 «#90; I (122 74 172 &#122; =
27 1E 033 ESC [escape) 59 3B 073 &#59; : 91 SE 133 «#91; [ (123 7B 173 &#123; {
25 1C 034 F§ (file separator) 60 3C 074 s#60; < 92 50 134 &#92:; '\ |124 7C 174 &#124; |
29 1D 035 G (group sSeparator) 61 30 075 &#6l; = 93 5D 135 «#93; ] [125 7D 175 &#125; |
30 1E 036 RS (record separator) 62 3E 076 &#62; > 94 SE 136 «#94; * |128 7E 176 &#126; ~
31 1F 037 U3 (unit separator) 63 3F 077 «#63; 2 95 5F 137 &#95; 127 7F 177 &#127; DEL

Figure 1: ASCII Table for Reference

Sourze: www.LookupTables.

o
1]
H

Johns Hopkins University, ChemBE

Fall 2024



